
XTrace WhitePaper

Abstract

XTrace is a decentralized protocol that provides AI agents with a secure, privacy-
preserving memory and knowledge infrastructure. The protocol enhances efficient
collaboration and autonomous learning while ensuring secure knowledge sharing
among AI agents. By integrating cutting-edge AI and cryptography solutions,
XTrace has developed an encrypted semantic search that operates at millisecond
speeds. This functionality allows AI agents to perform retrieval-augmented gener-
ation on encrypted datasets using encrypted queries. The innovation establishes
a secure, privacy-preserving knowledge base and enables the creation of share-
able, portable, personalized memories for AI agents with modular access controls.
Additionally, it introduces statefulness, empowering agents to recall and utilize
knowledge from past interactions. These capabilities fundamentally transform how
AI agents securely interact with datasets and other AI agents, unlocking a broad
spectrum of applications.

Contents

1 Introduction 2

2 XRAG 2

2.1 RAG overview ... 2

2.2 Embeddings and Similarity Measure ... 3

2.3 Matryoshka Representation Learning ... 3

2.4 Binary Embedding and Reranking .. 3

2.5 Binary Embedding as Locality Sensitive Hash .. 4

2.6 Optimizations .. 5

2.6.1 Indexing and Clustering ... 5

2.6.2 BERT-based Two-Stage Retrieval .. 5

2.7 Privacy Preserving XRAG ... 6

2.8 Benchmark TFHE vs Paillier vs XTrace Optimized Paillier Retrieval 8

3 Memory Sharing Layer for Agents 8

3.1 Why Agents Need Memory Layer .. 8

3.2 Memory Hierarchy ... 9

3.2.1 XTrace Universal Memory .. 9

3.2.2 Personalized Memory .. 9

3.3 Working Memory Implementation: Paging with LRU Eviction 10

XTrace WhitePaper

2

1 Introduction

In today’s data-driven landscape, businesses face the dual challenge of leveraging the vast
potential of artificial intelligence while ensuring data security, privacy, and verifiability. As AI
applications proliferate in both the B2B and B2C sectors, there is increasing demand for a robust
solution that can ensure secure data access and foster continuous learning without compromising
privacy.

XTrace meets these demands by establishing itself as the essential privacy-preserving data layer
for AI agents. Our protocol is designed to be model-agnostic, enabling seamless integration across
diverse AI ecosystems. This approach not only enhances data security, but also ensures that all AI
agents, regardless of their underlying models, can operate within a framework that prioritizes data
integrity and confidentiality.

At the core of XTrace technology is XRAG, a groundbreaking solution for semantic searches
over encrypted text, capable of millisecond retrieval for each data chunk. This advanced capability
allows for the creation of shareable, portable, and personalized memories and knowledge bases, all
equipped with modular access controls for AI agents. Such customization and security mark the
beginning of a new era of autonomy and statefulness for AI agents. XRAG enables these agents to
learn from and build on previous interactions securely, ensuring that the confidentiality of the data is
never compromised. This revolutionary capability lays the foundation for AI agents to operate with
an unprecedented level of intelligence and discretion.

Building on the XRAG technology, XTrace equips its AI agents with personalized memory
systems. These systems enable agents to retain valuable context from previous interactions and
continuously adapt to user preferences and needs. As users maintain full control and ownership of
their data, this secure, portable memory evolves with each interaction, making agents progressively
more intelligent,efficient, and responsive. The ability to collaborate with various AI vendors while
safeguarding data ownership enhances this adaptability. This continuous and dynamic learning loop
offers businesses significant operational advantages, including resource optimization, cost reductions,
and improved decision-making capabilities.

2 XRAG

XRAG is a cutting-edge framework that enables secure, privacy-preserving AI-driven data
retrieval and collaboration across enterprises. At the heart of XRAG lies advanced cryptographic
techniques, such as homomorphic encryption, Matryoshka Representation Learning, and quantized
embeddings, allowing AI agents to query encrypted datasets without exposing the prompt. This
approach ensures that AI agents can access relevant data securely while maintaining full end-to-end
privacy for all parties involved.

One of the key innovations in XRAG is the use of homomorphic encryption to protect data
during the query process. This ensures that even as AI agents interact with the data, no sensitive
information is exposed or decrypted. XRAG’s quantized embedding andreranking strategies further
enhance the system’s efficiency by performing only bit-level operations, eliminating the need for
floating-point computations. This optimization drastically reduces the computational load while
maintaining the integrity and privacy of the data.

2.1 RAG overview

Retrieval-Augmented Generation (RAG) is an AI technique that enhances large language
models (LLMs) by integrating relevant information from external knowledge bases. Through se-
mantic similarity calculations, RAG retrieves document chunks from a vector database, where these
documents are stored as vector representations. This process reduces the generation of factually
incorrect content, significantly improving the reliability of LLM outputs.[5]

A RAG system consists of two core components: the vector database and the retriever. The
vector database holds document chunks in vector form, while the retriever calculates semantic
similarity between these chunks and user queries. The more similar a chunk is to the query, the more
relevant it is considered, and it is then included as context for the LLM. This setup allows RAG to

3

dynamically update an LLM’s knowledge base without the need for retraining, effectively addressing
knowledge gaps in the model’s training data.

The RAG pipeline operates by augmenting a user’s prompt with the most relevant retrieved
text. The retriever fetches the necessary information from the vector database and injects it into the
prompt, providing the LLM with additional context. This process not only enhances the accuracy and
relevance of responses but also makes RAG a crucial technology in enabling AI agents to work with
real-time data, making them more adaptable and effective in practical applications.

2.2 Embeddings and Similarity Measure

Queries to a vector database typically consist of unstructured data, which are converted into
embeddings, represented as a vector q ∈ Rn. The data stored in a vector database can be represented
as a matrix D ∈ Rm ×n. The retrieval process, given q, D and a similarity measure f(u,v) :
Rn × Rn → R, is defined as:

argmax if(q, D i)
In simpler terms, this process involves matching a query—whether in text, image, audio, or another
format—with the most similar data in the database, based on the chosen similarity measure f.
Typically, f might be cosine similarity, which captures semantic similarities between text embeddings.
This allows the system to effectively match queries with the most relevant data stored, improving the
accuracy and performance of information retrieval in various applications, including AI training and
real-time data processing.

2.3 Matryoshka Representation Learning

The length of the embedding used in downstream tasks is a major factor when it comes to
computational efficiency. In general, for retrieval, the shorter the length of the embedding, the
faster the retrieval operation, but the less accurate the retrieved results. XTrace uses Matryoshka
Representation Learning(MRL) to minimize the computational complexity of downstream retrieval
tasks while retaining as much retrieval accuracy as possible.

MRL encodes information at different granularities and allows a single embdedding to adapt to
the computational constraints of downstream tasks. Specifically, given any embedding model trained
using training loss Lr (x), an MRL loss is defined as

The MRL loss ensures that the information in the resulting representation is front loaded. That is, on a
high level, the embeddings learned using MRL can be truncated while retaining as much information
as possible. With MRL, XTrace is able to use binary embeddings of size 512 while retaining 90.76%
retrieval accuracy, which hits a sweet spot when it comes to the speed and accuracy trade-off as
shown in the metrics collected in table 1.

Dimension 1024 512 256 128 64
float32 Performance Retention (%) 100 95.22 86.01 67.34 34.25
binary Performance Retention (%) 96.46 90.76 79.52 60.31 32.28

Table 1: MRL Performance Retention vs Truncation + Quantization

2.4 Binary Embedding and Reranking

Since we are working with zero-knowledge (zk) and homomorphic encryption, we avoid
performing calculations using floating points due to their inherent nondeterminism and high com-
putational requirements. Instead, we propose using a quantization model that converts vectors into
bit vectors with values 0 and 1 instead of floating-point embeddings. To quantize the floating-point
embeddings into integer embeddings, we threshold the normalized embeddings at 0:

4

In our system, we use trained binary embeddings for retrieval, with the training method detailed in
the section on BERT-based two-stage retrieval. Our embeddings are represented as q ∈ Zn2 and the
similarity measure to be Hamming Distance H : Zn2 × Zn2 → N:

A smaller Hamming Distance indicates closer embeddings and, thus, higher document relevance.
By utilizing Hamming Distance and binary embeddings, we enable partially homomorphic operations
through bit manipulations, eliminating the computational overhead associated with floating-point
operations in fully homomorphic encryption.

To maintain the performance of vector database retrieval, we implemented the re-ranking
technique suggested by Yamada et al.[7] Initially, we retrieve rescore_multiplier × topk results
using binary query and document embeddings, resulting in a list of the top k results from this
double-binary retrieval. We then rescore this list of binary document embeddings using the float32
query embedding. The details of this process are introduced in the section on BERT-based two-stage
retrieval. By doing so, we can still preserve 95% of the accuracy while working with bit data.

2.5 Binary Embedding as Locality Sensitive Hash

In this section we provide a mathematical proof that our binary embedding technique is a family
of locality sensitive hash functions over Rd , and therefore the Hamming Distance computed over
binary embedding preserves the relative distance measure in the vector space of the original real
embeddings.

A locality sensitive hashing scheme is a distribution over a family of hash function F operating
over a collection of objects, such that for every 2 objects x,y:

Prh∈F [h(x) = h(y)] = sim(x,y)

where sim(x,y) ∈ [0, 1]. Such a scheme leads to a compact representation of objects so that similarity
of objects can be estimated from their compact sketches, and also leads to efficient algorithms for
approximate nearest neighbor search and clustering.[1]

Consider the following binary embedding scheme introduced in Charikar [1], given a collection
of vectors in Rd , we define a family of hash function as follows: We randomly sample a vector r
from a standard Gaussian distribution and define hr (x) as:

hr (x) = I(r · x ≥ 0)

hr is a family of locality sensitive hash function which follows from the fact that:

where θ(x,y) is the angle between vectors x,y ∈ Rd , and cosθ(x,y) is a popular similarity measure
used in information retrieval. This is proved in the work by Goemans and Williamso [4]

Now that we have established the fact that the binary embedding is in fact a locality sensitive
hashing scheme, what remains to be shown is that the distance measure 1 − sim(x,y) in Rd is
isometrically embeddable to Hamming Distance.

First notice that for any family of locality sensitive hash function h that corresponds to simi-
larity measure sim(x,y), there exists a binary locality sensitive hash function that corresponds to

Consider a pairwise independent hash function b(·) that maps vectors to {0, 1}, it is easy to
verify that b(h(·)) is a family of locality sensitive hashing function, given that if x = y, Pr[b(x) =

5

b(y)] = 1, and if x y: Pr[b(x) = b(y)] = 1/2:

Note that such a binary hash function family gives an embedding of objects into the Hamming cube
(obtained by concatenating the values of all the hash functions in the family). For object x, let v(x)
be the element in the Hamming cube x is mapped to. 1 − sim′ (x,y) is simply the fraction of bits
that do not agree in v(x) and v(y) , which is proportional to the Hamming distance between v(x) and
v(y) . Thus this embedding is an isometric embedding of the distance function 1 − sim(x,y) in the
Hamming cube. But

1 − sim′ (x,y) = 1 − (1 + sim(x,y))/2 = (1 − sim(x,y))/2

This implies that 1 − sim(x,y) can be isometrically embedded in the Hamming cube.

2.6 Optimizations

In this section, we will present the optimization techniques we have designed to ensure our
retrieval system achieves peak performance,scalability, and efficiency while maintaining privacy,
verifiability, and security.

2.6.1 Indexing and Clustering

One common way to speedup the retrieval process of the vector database is to use clustering
methods such as K-means to cluster similar data points together. When given a search query q, the
database will compute, given set of cluster centroids C produced by K-means:

argmaxx∈argmaxc∈C f (q,c)
f(q, x)

Note by doing clustering, instead of a scan over the entire database, we only need to iterate of a
cluster identified by the most similar centroid compared to the search query, which is a significant
performance boost. To determine the number of cluster kin our database we define the following
measure a(i) for the data point i in cluster CI , which captures the notion of how well i is assigned to
its cluster:

We then define the mean dissimilarity b(i) of point i to some cluster CJ as the mean of the distance
from i to all points in CJ :

Finally we can set the number of cluster k to be the value that maximize the following quantity, which
by setup reflectshow well the data is clustered:

2.6.2 BERT-based Two-Stage Retrieval

Retrieving documents using embeddings suffer from information loss from the process of
turning documents into vector embeddings. To make retrieved documents more semantically similar
to the user query, we can use re-ranking in a two-stage retrieval process. In first stage of the retrieval
process, i.e. candidate generation stage, a regular indexed similarity search will be performed on the
query vector and the document vectors stored in the database. Denote the set of document chunks
returned in the first stage retrieval as D, a re-ranker R is a model that, given query q and first stage

6

Figure 1: BERT-based Binary Passage Retriever

document set D, estimates the relevancy of q with respect to each document chunk di ∈ D. The
process of using re-ranker to select the most relevant document chunks from D is the second stage
retrieval,i.e. reranking stage. Specifically our two-stage BERT-based retrieval process contains the
following:

• Binary Passage Retriever(BPR): BPR computes a binary embedding for each document
chunk in the vector database by adding a hash layer on top of a BERT-encoder. Given
embedding e ∈ Rd outputed by BERT-encoder , the hash layer transform it into a binary
code h = sign(e)

• Two-stage Retrieval: At the candidate generation stage, we efficiently obtain the top-l
candidate document chunks using the Hamming distance between the binary code of query
hq and each passage in the vector database hp. We then rerank the l candidate passages
using the inner product between the continuous embedding of query eq and hp and select
the top-k passages from thereranked candidates to return to the querier.

• Training BPR: Due to the addition of a hash layer, which uses sign function is not differen-
tiable at 0, to train the BPR using gradient descent, we need to approximate the hash layer
with a differentiable function. Specifically, during training, the hash layer is computed via:

h̃ = tanhβe

Where β is a scaling factor. It is easy to verify that h̃ converges to h as β → ∞ . Given
training data {qi , p+i , p

−
i ,1 , . . . , p

−
i ,n

L = Lcand + Lrerank , where

Evidence in Yamada, et al. [7] has shown that the two-stage retrieval process using BERT-
based binary retriever outperforms the single-stage retrieval process in multiple information retrieval
benchmark datasets.

2.7 Privacy Preserving XRAG

This section outlines the protocol by which an AI agent securely retrieves contextual data from
its encrypted knowledge base using XRAG technology. The process begins when a user inputs a
prompt, which the AI agent converts into a bit vector. This vector is then encrypted homomorphically.
The encrypted prompt is transmitted to the XRAG network, where homomorphic operations are
executed on the ciphertext to isolate the most pertinent data chunks. The top-k ciphertext data chunks

7

Figure 2: XRAG Overview

are subsequently returned to the data consumer, ensuring that the entire search process maintains
strict security protocols.

The protocol described here is designed for both data providers and queriers within the XTrace
system. While it currently utilizes the Paillier encryption scheme, it is also compatible with other
homomorphic encryption schemes, allowing for adaptability and broader application.

Data Preprocessing

1. Setup: Data Provider conducts the following step locally:
(a) Paillier Key Generation Gen() → (skhom , pkhom)
(b) KZG Setup Setup(λ, F) → gp
(c) BLS Signature Gen() → (skBls , pkBls)

2. File upload: The data provider preprocesses the file by splitting it into chunks, running
binary embeddings on each chunk, and then executing the following encryption scheme for
each chunk’s embedding mi :
(a) Encrypt each chunk with Enc(pkhom , mi) → cti
(b) KZG Commit to each data chunk Com(gp,mi) → commi

(c) BLS Sign each data chunk with Sig(sk, commf) → σ i

(d) Upload cti , commi ,σi for each data chunk mi to XRAG database

Query

1. Local Prompt Preprocessing:
(a) Run binary embeddings on the given query q
(b) Specify the data provider to work with and obtain pkhom , gp,pkBls
(c) Encrypt the prompt with pkhom and send it to XTrace database
(d) Generate key pair pkquerier , skquerier to get encrypted data and deposit tokens on

Smart Contract

2. Semantic Score Calculation:
(a) Perform homomorphic operation to calculate the hamming dis-

tance between the ciphertext and the encrypted query Hamming
Distance(Enc(embedquery), Enc(embedchunk)) → res

(b) Return the encrypted semantic results res to the data provider
(c) Data providers decrypts the result with skhom and perform re-ranking on top of the

similarities
(d) Send back data chunks with highest similarity and encrypt it with the public key from

the querier Enc(pkquerier , mi) → ctres and the KZG evaluation Eval(gp,f, u) → π
back to the querier

8

2.8 Benchmark TFHE vs Paillier vs XTrace Optimized Paillier Retrieval

We have implemented and benchmarked the performance of our system with both TFHE
scheme implemented by Zama [2] and Paillier scheme implemented by Intel.[3] In addition,
we have also conducted an XTrace Optimized Paillier Encryption Solution. The following is
the performance we get by running the system on a Amazon M6i large EC2 with Intel Xeon
8375C (Ice Lake) CPU, Ubuntu 24.04 OS and 8GB RAM. All documents are represented as
binary embeddings of length 512.

Crypto System Preprocessing&KeyGen Encrypt Query Apply Calculation Decrypt Result
Cosine Similarity Plaintext 0 0 72ms 0

TFHE 862ms (per query) 71ms 2212ms 0.5ms
Paillier 256ms (one time setup) 659ms 36ms 291ms

Paillier XTrace Optimized 256ms (one time setup) 5.6ms 0.094ms 2.8ms

Table 2: Time Per Query Per Chunk

Crypto System Circuit Size Cipher Size PK/SK Size Evaluation Key Size
TFHE 5KB 16.7MB 8KB 211.4MB

Paillier XTrace Optimized N/A 0.001511 MB 2KB N/A

Table 3: Memory Footprint

3 Memory Sharing Layer for Agents

In the rapidly advancing field of artificial intelligence, the development of a memory layer
for AI agents represents a critical innovation, enabling these agents to not only perform
tasks but also to remember and learn from each interaction. This memory layer, essentially
a dynamic and evolving database, stores experiences and data in a way that AI agents can
access and utilize in future tasks, thereby mimicking the human ability to build on past
knowledge. Such a system is pivotal in transforming AI agents from mere computational
tools to intelligent entities capable of contextual understanding and improved decision-
making. By continuously integrating new data while maintaining rigorous security and
privacy standards, the memory layer ensures that AI agents evolve into more sophisticated
and personalized assistants. In this section, we’ll explain the reason why Agents need
memory and provide the XTrace’s memory design for AI agent.

3.1 Why Agents Need Memory Layer

Large language models (LLMs) have a notable limitation due to context length constraints,
which cap the amount of information they can retain and reference at any given moment.
This limit means that LLMs struggle with understanding or recalling long conversations,
documents, or complex tasks that extend beyond their maximum token capacity, typically a
few thousand tokens. As interactions with LLMs become longer or involve more intricate
subject matter, the models often "forget" earlier parts of the conversation or document,
leading to repetitive responses, loss of context, or degraded performance. This constraint
highlights the need for effective memory solutions in LLMs, enabling them to retain, retrieve,
and apply information across interactions without reloading the same details repeatedly. A
memory component would allow LLMs to maintain continuity in conversations, handle
multi-step tasks,and draw on prior interactions, making them far more efficient and effective
in complex applications.
While state-of-the-art language models have achieved remarkable improvements in extending
context length, they still face significant challenges when it comes to reasoning over long,
complex inputs. Long context lengths theoretically allow these models to "see" more
information at once, which can be helpful in scenarios like summarization or document
review. However, simply increasing the amount of accessible text does not inherently
enhance a model’s reasoning abilities. These models often struggle with synthesizing and

9

integrating information meaningfully over extended contexts, especially when complex
relationships or logical steps are required to generate accurate responses[6]. Without the
capability to truly understand and reason across long-form text, these LLMs tend to fallback
on shallow pattern matching rather than deep inference. This limitation calls for more robust
memory architectures and improved attention mechanisms, enabling models not only to
access vast amounts of information but also to reason effectively across it, retaining essential
context and drawing conclusions with greater coherence and accuracy.

3.2 Memory Hierarchy

XTrace builds a two-tier memory system for all agents connected to XTrace’s knowledge
network. A XTrace managed universal memory that contains "common knowledge" which
all agents have access to, and a personalized memory for each individual agents which is
secured with XRAG and access control. This structure allows agents to store individual-
specific knowledge while ensuring privacy and secure data sharing. By combining universal
and personalized memory layers, XTrace enables agents to balance shared insights and indi-
vidualized learning, which supports more consistent, contextualized, and privacy-conscious
AI operations across the network.

3.2.1 XTrace Universal Memory

The universal memory layer in XTrace serves as a shared knowledge repository that all
connected agents can access, providing a foundational layer of "common knowledge." This
layer includes information and insights that are broadly useful across various contexts,
which could encompass standardized data, public knowledge, industry-specific guidelines,
or other reference material that is essential for agents working on diverse but interrelated
tasks. By storing and managing this shared knowledge centrally, XTrace’s universal memory
allows agents to instantly reference important information without the need to independently
process or store it themselves, reducing redundancy and saving processing power.
The universal memory layer also fosters collaboration among agents by acting as a single
source of truth. Agents can align their decisions and responses based on consistent, verified
knowledge,which minimizes discrepancies that might arise from using isolated datasets
or individual interpretations. This uniformity is crucial when agents need to work together
across complex or multi-step tasks, as it ensures that each agent operates with an identical
understanding of core principles and facts. Additionally, the universal memory layer can be
regularly updated with the latest, verified information, providing all agents with real-time
access to up-to-date data.
By offloading common knowledge to the universal memory, XTrace allows individual agents
to focus their personalized memory on context-specific details, user preferences, or unique
task insights, all of which remain private and secure. This layered memory approach not
only enhances efficiency but also enables agents to work together more effectively, accessing
shared knowledge as a baseline while still preserving the personalized learning and nuanced
memory required for specific tasks and user interactions.

3.2.2 Personalized Memory

As the proliferation of AI agents continues, we envision a future where every human will
have a personalized AI agent, which remembers all the contexts of their past interactions
and takes actions. Such an AI agents will require a auxiliary memory system, which XTrace
provides.
The personalized memory layer in XTrace is designed to store and manage information
unique to each agent, enabling them to retain specific details and learnings relevant to their
individual tasks and interactions. Unlike the universal memory, which holds commonly
accessible knowledge, personalized memory captures the unique context, preferences,
and past interactions pertinent to each agent, creating a more tailored experience and
allowing agents to build continuity over time. This layer empowers agents to remember
prior interactions with specific users or projects, draw on historical data relevant to particular
tasks, and maintain nuanced understanding without re-processing foundational details every
time.
XRAG ensures that personalized memory is accessible only to the designated agent and
within the scope of authorized queries, preserving user privacy through stringent access

10

control and cryptographic techniques. This privacy-focused approach means that each
agent’s personalized memory is isolated and encrypted, accessible only when relevant and
without exposing sensitive data across the network. This setup not only preserves data
confidentiality but also aligns with principles of data ownership and user consent, allowing
users or organizations to maintain control over their private information.

3.3 Working Memory Implementation: Paging with LRU Eviction

To address the challenge of limited context windows in large language models, XTrace has
introduced a Memory Paging system with LRU (Least Recently Used) Eviction, inspired by
the virtual memory architecture commonly used in operating systems. This approach allows
agents to manage memory more dynamically, effectively creating a "working memory" that
feels nearly limitless despite the constraints of finite context space.
Memory Paging works by dividing the agent’s memory into "pages" or manageable data
chunks. As the agent interacts and processes tasks, only the most relevant pages are loaded
into the context window, with less immediate data paged out. When the agent’s context
window reaches its limit, the LRU Eviction strategy prioritizes the removal of the least
recently used pages, making space for new, relevant information. This method allows
agents to seamlessly retrieve past context as needed while reducing the processing load and
preventing memory from becoming cluttered with outdated or irrelevant information.
This system provides agents with virtually unlimited memory space and maintains low per-
formance overhead, as the paging mechanism only retrieves what is contextually important
at each moment. It enables agents to remember long-term interactions, past decisions, and
task histories with continuity, without compromising efficiency or performance.

References
[1] Moses S. Charikar. “Similarity estimation techniques from rounding algorithms” . In:

Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of

Computing. STOC ’02. Montreal, Quebec, Canada: Association for Computing
Machinery, 2002, pp. 380–388. ISBN: 1581134959. DOI: 10 . 1145/ 509907 .
509965. URL: https : //doi.org/10.1145/509907.509965 .

[2] Ilaria Chillotti et al. TFHE: Fast Fully Homomorphic Encryption over the
Torus. Cryptology ePrint Archive, Paper 2018/421. 2018. URL:
https://eprint.iacr. org/2018/421.

[3] Intel Corp. Intel Paillier Cryptosystem Library: An ISO-compliant
Implementation Accelerated with Intel AVX512/IFMA. URL:
https://www.intel.com/content/ www / us / en / developer / articles /
technical / homomorphic - encryption / iso-compliant-pail l ier-
cryptosystem-library.html .

[4] Michel X. Goemans and David P. Williamson. “Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming” . In: J.
ACM
42.6 (Nov. 1995), pp. 1115–1145. ISSN: 0004-5411. DOI:10.1145/227683.227684.
URL:https: / / doi.org/10 .1145 /227683 .227684 .

[5] Patrick Lewis et al. Retrieval-Augmented Generationfor Knowledge-Intensive
NLP Tasks. 2021. arXiv: 2005.11401 [cs.CL].
URL:https://arxiv.org/abs/2005. 11401.

[6] Nelson F. Liu et al. Lost in the Middle: How Language Models Use Long Contexts.
2023 . arXiv: 2307.03172 [cs.CL] . URL:https: / /arxiv.org/abs/2307.03172 .

[7] Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi. Efficient Passage Retrieval
with Hashingfor Open-domain Question Answering. 2021. arXiv:2106.00882
[cs.CL]. URL :ht tps: / /arx iv .org/abs/2106.00882 .

https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/509907.509965
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2018/421
https://www.intel.com/content/www/us/en/developer/articles/technical/homomorphic-encryption/iso-compliant-paillier-cryptosystem-library.html
https://www.intel.com/content/www/us/en/developer/articles/technical/homomorphic-encryption/iso-compliant-paillier-cryptosystem-library.html
https://www.intel.com/content/www/us/en/developer/articles/technical/homomorphic-encryption/iso-compliant-paillier-cryptosystem-library.html
https://www.intel.com/content/www/us/en/developer/articles/technical/homomorphic-encryption/iso-compliant-paillier-cryptosystem-library.html
https://www.intel.com/content/www/us/en/developer/articles/technical/homomorphic-encryption/iso-compliant-paillier-cryptosystem-library.html
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/227683.227684
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2106.00882
https://arxiv.org/abs/2106.00882
https://arxiv.org/abs/2106.00882

	XTrace WhitePaper
	1 Introduction
	In today’s data-driven landscape, businesses face
	and improved decision-making capabilities.
	2 XRAG
	maintaining the integrity and privacy of the data.
	2.1 RAG overview
	2.2 Embeddings and Similarity Measure
	2.3 Matryoshka Representation Learning
	2.4 Binary Embedding and Reranking
	2.5 Binary Embedding as Locality Sensitive Hash
	2.6 Optimizations
	2.6.1 Indexing and Clustering
	2.6.2 BERT-based Two-Stage Retrieval

	benchmark datasets.
	2.7 Privacy Preserving XRAG
	2.8 Benchmark TFHE vs Paillier vs XTrace Optimiz
	scheme implemented by

	3 Memory Sharing Layer for Agents
	and personalized assistants. In this section, we’
	3.1 Why Agents Need Memory Layer
	context and drawing conclusions with greater coher
	3.2 Memory Hierarchy
	vidualized learning, which supports more consisten
	3.2.1 XTrace Universal Memory
	to focus their personalized memory on context-spec
	3.2.2 Personalized Memory

	users or organizations to maintain control over th
	3.3 Working Memory Implementation: Paging with L

